國立清華大學課程大綱-研究所 | 科號 | IEEM5191 | 組別 | | 學分 | 3 | 人數限制 | 50 | |--------|--|----|--|------|-----|------|----| | 上課時間 | M7M8M9 | | | 教室 | 901 | | | | 科目中文名稱 | 非線性規劃 | | | | | | | | 科目英文名稱 | Nonlinear Programming | | | | | | | | 任課教師 | 李雨青 | | | | | | | | 檔修科目 | 建議先
修 ORI, Linear Programming, Computer
Language | | | uter | | | | ### ※下列各欄由任課教師提供※ 依IEET與評鑑精神,本系擬定之核心能力如下,教師請勾選本課程所欲培養之核心能力,並根據此建立核心能力達成指標,以課程評分量表(Rubrics)作為評估方法,並依據此評分量表確認及評估教學成效,是否作後續教學改進之用。(課程對應之核心能力並非要求"全選",無對應到的核心能力"可以不選") 此科目對應之系 所課程規畫所欲 培養之核心能力 Core capability to be cultivated by this course 工工專業與系統分析能力 IE profession and systems analysis skills 80% 獨立研究及解決問題的實作能力 Capability of independent research and problem solving 5% 領導、溝通與團隊合作能力 Leadership and coordination abilities 5% □ 自我充實能力 Capability of self-development and enrichment 5% 國際觀視野、國際化互動與表達能力 Global interaction and communication skills 5% | | This course aims to equip students with the toolbox of nonlinear programming. Students are expected to learn the basic properties, algorithms, and the common issues arising from a nonlinear programming problem. | | | | |--------|--|--|--|--| | 一、課程說明 | We will study the formulations of the unconstrained and constrained nonlinear programming and the solution techniques including gradient method, conjugate-gradient method, quasi-newton method, Lagrange multiplier methods, sequential quadratic programming methods, and interior-point methods; Convexity, duality, constraint qualification, and optimality condition of a nonlinear programming model will be introduced; Related classes of problems such as convex programming, global optimization, variational inequalities, etc., will be mentioned. In the semester, students will be assigned a few homework exercises, an in-class midterm exam, and a final project with report and presentation. | | | | | 二、指定用書 | Nonlinear Programming, Dimitri P.Bertsekas, Athena Scientific, 2ndEdition, 2003 Required! | | | | | 三、參考書籍 | Numerical Optimization, Jorge Nocedaland Stephen J. Wright, Springer, 2ndEdition, 2000 Convex Analysis and Optimization, Dimitri P. Bertsekas, Anglia Nedic, and Asuman E. Ozdaglar, Athena Scientific, 2003. Introduction to Global Optimization, Reiner. Horst, Panos M. Pardalos, and Nguyen Van Thoai, Kluwer Academic Publishers, 2ndEdition, 2000 Finite-Dimensional Variational Inequalities and Complementarity Problems, Francisco Facchinei and Jong-Shi Pang, Springer, 2003 線性錐優化(簡體中文), 方述誠與邢文訓, 科學出版社, 2013 Selected journal papers | | | | | 四、教學軟體 | (1) AMPL: with the solvers on NEOS A demo will be given in Lecture 3. (2) Matlab or other computer languages This is for implementing algorithms as a homework exercise or your final project. | | | | | 五、教學方式 | Students will usually be asked to preview the range-specified texts (which are announced every week) before the lectures. The lectures are expected to be a combination of handouts delivering, blackboard writing, and slides displaying. Taking (some) classroom notes should be helpful. | | | | | | Detailed Contents: | | | | | | |-------------------|---|--|--|--|--|--| | | 1. Unconstrained optimization | | | | | | | | 2. Constrained optimization | | | | | | | 六、教學進度 | 3. Lagrange multiplier methods, | | | | | | | | 4. Sequential quadratic programming methods | | | | | | | | 5. Interior-point methods | | | | | | | | 6. Related classes of problems | | | | | | | 七、成績考核 | Homework 30%; Midterm Exam 30%; Final Project 40% | | | | | | | 八、講義位址
http:// | | | | | | | | 九、核心能力達
成指標 | 只要和課程有對應之核心能力,每項核心能力需列出至少一項「核心能力達成指標」,用以評量學生對核心能力的學習程度,期末將請同學進行自評。
請老師填完後於此課程大綱上方簽名。
以下列出三項系定核心能力之Rubrics範例供參考,例填:1,2,5 | | | | | | ## 核心能力1: 工工專業與系統分析能力 核心能力 1. 正確之工業工程與工程管理領域相關技術概念(50%) 達成指標 2. 應用工業工程與工程管理領域之各項數理工具或技能(50%) #### 核心能力2: 具備獨立研究及解決問題的實作能力 核心能力 1. 學生思考及問題解決之流程具創新性(100%) 達成指標 ## 核心能力5: 具備國際觀視野、國際化互動與表達能力 核心能力 1. 學生對於論文內容能收集國際產業新知並掌握全球化趨勢(50%) 達成指標 2. 運用全球化策略與國際觀點處理論文內容,並與台灣現況作比較(50%)