科號	NES5251	學分	3
中文課名	放射治療物理學		
英文課名	Radiation Therapy Physics		
期望上課時間	<u>T5T6T7</u>	上課教室	綠 202
田田上畑			

課程大綱

 一、課程說明(Course Description): This course is designed to cover topics in radiation therapy physics with emphasis on the practical details. This course provides both basic radiation physics and physical aspects of dosimetry treatment planning, using photon beams, electron beams, and brachytherapy sources. In addition, the theory of absorbed dose measurements and radiotherapy technologies are also included.

二、指定用書(Text Books) none

三、參考書籍(References) Various published articles, reports and books.

四、教學方式(Teaching Method) classroom power point presentations. 五、教學進度(Syllabus)

units	subjects	contents
0*	Interactions of	Photoelectric, compton, pair
	photons with	production, exponential attenuation,
	matter	linear/mass attenuation coefficients,
		exposure, kerma, dose
0*	Interactions of	Excitation/ionization, soft/hard
	charged	collisions, bremsstrahlung, stopping
	particles with	power, restricted stopping power
	matter	
0*	Nuclear decay	Nuclear transformations, activity,
		transient/secular equilibrium
1	External photon	Medical linear accelerators, spectrum,
	beams - basic	fluence distributions, Sc, Sp, depth-
	properties	dose curves, TMR/TPR, dose profiles,
		surface dose, FFF beams
2	External photon	Blocks, MLC, wedges (hard, universal.
	beams - beam	Dynamic)
	modifying	
	devices	
3	External photon	CT calibration curve, Empirical based
	beams - dose	methods, model based methods

	calculation	(convolution/superposition, AAA,
	methods	Acuros), MU calculation
4	External	Depth-dose curves, dose distributions,
	electron beams	dose calculations, clinical
		applications
	Reference	TG-21, chamber theory, calibration
5	dosimetry - air-	factors, N _k , N _x , N _{gas}
	based	
6	Reference	TG-51, TRS-398, $N_{D,w}$, quality conversion
	dosimetry -	ko.
	water-based	
7	Other dosimeters	Film, TLD, diodes, 2D-array, gamma-
		index evaluation
	Intensity-	Optimization, delivery, dose
8	modulated	calculation, quality assurance
0	radiation	
	therapy	
	Special	TBI, TSET, Small field dosimetry,
9	techniques,	clinical applications, biological dose,
0	Radiosurgery,	cell survival curves, fractionation
	SBRT	
10	Image guided	Portal imaging, kV, CBCT, registration
10	radiotherapy	- point, surface, image
11	Shielding, QA	Treatment room shielding, tolerances,
11		daily, monthly, annual QA
12	Brachytherapy -	Isotopes, source calibration, dose
14	basics	calculation TG-43
13	Brachytherapy -	LDR, HDR, Temporary/permanent implants,
	clinical	Prostate, cervical, breast
	applications	
14	Plan evaluation	Isodose distributions, DVH, TCP/NTCP
		models, Kaplan-Meirer survival curves
15	Proton therapy	Proton physics, accelerators, beam
		delivery (scanning, scattering), Bragg
		peak, SOBP
16	Carbon-ion	Carbon ion physics, RBE modeling
	therapy	

*These are basic concepts important to radiation therapy physics, they are not included here for presumably they have been covered in other courses such as "Radiation Physics" and "Radiation Dosimetry". However, if deemed helpful to the students, they can also be included in this course.

六、成績考核(Evaluation) Midterm and Final examinations, 50% each. 七、可連結之網頁位址

此科目對應之系所課程規畫所欲培養之核心能力		
百分比	核心能力	
(20)%	務實中英文科技論文閱讀與撰寫、檢索文獻與簡報的訓	
	練	
	Ability to read and write both Chinese and English technical	
	papers, retrieve references and give presentations.	
()%	強化規劃、領導與執行團隊合作的能力	
	Ability to plan, lead and collaborate.	
(10)%	發掘與分析工程問題,以及創新思考與研發的能力	
	Ability to identify and analyze engineering problems, propose	
	innovate thinking and research development.	
(40)%	運用專業核子工程與科學知識的能力	
	Ability to apply professional nuclear engineering and science	
	knowledge.	
(10)%	認識核能發電的國際發展趨勢,瞭解核能、核子工程與	
	科學技術與輻射對環境、社會 及全球的影響,並培養終	
	身自我學習成長的能力	
	Knowledge of global development trends of nuclear power; an	
	understanding of the impact of nuclear power, nuclear	
	engineering and science and radiation in environmental, societal	
	and global contexts; and the ability to cultivate habits of life-long	
	learning	
(10)%	增進策劃及執行研究計畫的能力	
	Ability to plan and execute the research projects.	
(10)%	應用實驗或模擬以探討核子工程與科學問題,以及獨立	
	解決問題的能力	
	Ability to conduct experiments and simulations to survey nuclear	
	engineering and science problems, and solve them	
	independently.	
()%	體認專業倫理及社會責任之能力	
	Understanding of professional ethics and social responsibility	